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Abstract

The identification, characterization and quantification of crystal forms are becoming increasingly important within
the pharmaceutical industry. A combination of different physical analytical techniques is usually necessary for this
task. In this work solid-state techniques, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and
X-ray powder diffractometry (XRPD) were combined to analyze polymorphic purity of crystalline ranitidine–HCl, an
antiulcer drug, H2 receptor antagonists. A series of 12 different mixtures of Form 1 and 2 was prepared by geometric
mixing and their DRIFT spectra and XRD powder patterns were obtained and analyzed, either alone or combined
together, using Artificial Neural Networks (ANNs). A standard feed-forward network, with back-propagation rule
and with multi layer perceptron architecture (MPL) was chosen. A working range of 1.0–100% (w/w) of crystal Form
2 in Form 1 was established with a minimum quantifiable level (MQL) of 5.2% and limit of detection of 1.5% (w/w).
The results demonstrate that DRIFTS combined with XRPD may be successfully used to distinguish between the
ranitidine–HCl polymorphs and to quantify the composition of binary mixtures of the two. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The oral route is extensively used for adminis-
tration of drugs. The most popular dosage forms
are tablets and capsules where the drug is usually
presented as a solid. Solid state properties of the
active ingredient can influence the in vivo perfor-

mance of the dosage form [1,2] and physical char-
acterization of the solid state of a drug substance
is necessary for successful development and ap-
proval of a pharmaceutical product. Polymor-
phism is the ability of a substance to crystallize in
various arrangements of molecules [3]. The poly-
morphic behavior of organic solids can be of
crucial importance in the pharmaceutical industry
[4]. Properties varying between polymorphs in-
clude stability, crystal shape, compressibility, den-
sity, and dissolution rate. It is critical to select the

* Corresponding author. Tel.: +60-4-6577888 ext. 2696;
fax: +60-4-6570017.

E-mail address: nena@usm.my (S. Agatonovic-Kustrin).

0731-7085/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0731-7085(01)00375-2



S. Agatono�ic-Kustrin et al. / J. Pharm. Biomed. Anal. 25 (2001) 741–750742

optimum solid form for manufacture, to control the
crystallization of drugs and to ensure that the
approved form is produced consistently and is
present in the formulation. Ideally, the drug sub-
stance should consist only of a single form because
it is usually easier to control production to produce
only one form.

Ranitidine hydrochloride (N-(2[({5-[(dimethy-
lamino)methyl]-2-furanyl}methyl)thio]ethyl}-N �-
methyl-2-nitro-1,1-ethenediamine hydrochloride),
an anti-ulcer drug in current use is one of the 20
most frequently prescribed drugs (Fig. 1). Crys-
talline ranitidine is polymorphic and exists in two
crystalline forms known as Form 1 and Form 2,
and in several pseudopolymorphic forms [5]. Ran-
itidine hydrochloride Form 1 crystallizes from an
ethanolic solution after addition of ethyl acetate [6].
Crystallization is difficult and expensive. Form 2
was reported and patented later. It crystallizes from
isopropanol–HCl and is easier to be produced
commercially [7].

Due to the patent issue [8] and its commercial
value, manufacturers and researchers have paid
special attention to both forms. The two forms have
almost equal solubilities and there is no difference
in bioavailability [9,10]. However, studies on their
solid-state stability with different techniques have
yielded slightly different stability results. Polymor-
phic transition may occur or accelerate upon hu-
midity, temperature changes and mechanical
forces, such as compression (the use of pressure in
sample preparation for FTIR spectroscopy lead to
a polymorphic transition) [11,12].

The aim of this work was to analyze polymorphic
purity of crystalline ranitidine–HCl drug sub-
stance, by combining of two solid-state techniques,
diffuse reflectance infrared Fourier transform spec-
troscopy (DRIFTS) and X-ray powder diffrac-
tometry (XRPD) via Artificial Neural Networks
(ANNs). Neural networks are a wide class of
flexible parameterized nonlinear regression and

discriminant models used for empirical regression
and classification modeling. Their flexibility en-
ables them to discover more complex relationships
in data than traditional statistical models, which
often assume a linear dependence between pre-
dicted output variable and the given input vari-
ables. Hence, ANNs provide an analytical
alternative to conventional techniques, which are
often limited by strict assumptions of normality,
linearity, variable independence etc. ANNs have
been successfully used to classify spectra from
various modalities including gamma ray spec-
troscopy [13] infrared spectroscopy [14,15], mass
spectrometry [16], NMR spectroscopy [17,18] and
X-ray fluorescence [19] over the last few years.

2. Materials and methods

2.1. Ranitidine hydrochloride

Samples of ranitidine–HCl Form 1 (Ch.-B
560018) and Form 2 (A.-Nr.32005)] were supplied
by Dolorgiet Pharmaceuticals, St. Augustin, Ger-
many. The polymorphic forms were characterized
using elemental analysis, X-ray diffraction (XRD),
Fourier transform-infrared spectroscopy (FTIR),
DRIFTS, Raman spectroscopy (Raman), scanning
electron microscopy (SEM) and light microscopy
as described earlier [11].

2.2. Polymorphic mixtures

Different binary mixtures were prepared from
the two polymorphic forms. The weight percent of
Form 2 in the mixtures were 0, 1, 2, 5, 10, 20, 30,
40, 50, 60, 70, 100%. All the mixtures were mixed
geometrically. Mixtures with 0, 1, 2, 10, 30, 40, 50,
70 and 100% of Form 2 were used for training and
testing the ANN and with 5, 20, 60% of Form 2
were used as a validation data set. Each sample was
prepared in triplicate.

2.3. Procedure for sample preparation

2.3.1. DRIFTS analysis
It is widely recognized that variation in particle

size can have a significant influence on the diffuseFig. 1. Chemical structure of Ranitidine hydrochloride.
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reflectance measurements [20]. Grinding could
reduce the variation in particle size. However,
grinding was avoided because it could induce
polymorphic transitions [21]. We wanted to keep
the method as simple as possible and to directly
analyze the powdered samples with minimal
pretreatment. Sample mixtures were dispersed as
a 5% (w/w) mix in KBr (AR grade, BDH
Laboratory Suppliers, Poole, UK), placed in the
large sample cup (approximately 300 mg) using
the supplied sample cup holder. A razor blade
was used to smooth the sample surface. Spectra
were measured immediately after mixing.

2.3.2. XRPD calibration analysis
In the preliminary experiments about 360 mg of

powder samples were compressed using different
pressures of 1, 2 and 4 tons. Resulting tablets
were exposed to X-ray scans. The relative intensi-
ties of the major peaks remained constant indicat-
ing that the application of pressure did not induce
any preferred orientation. In addition, a flat sur-
face was achieved, minimizing negative interfer-
ence due to sample curvature or irregular sample
surface.

About 360 mg of binary mixtures was com-
pacted as tablets (�16 mm) under a mass of 2
tons. It has been found earlier that this com-
paction does not lead to the polymorphic
transition.

2.4. Apparatus

For analysis of the samples, a dynamic align-
ment FT-IR spectrophotometer (Bio-Rad FTS
175C, Bio-Rad Laboratories, Cambridge, USA)
fitted with a diffuse reflectance accessory (Pike
Technology Easidiff) was used. Spectra were cap-
tured using PC and Win-IR software. About 16
scans were averaged. A KBr background scan was
performed routinely.

The XRPD scans were performed on a Philips
wide angle XRPD with X-ray generator (PW
1130/00) and goniometer (PW1050, Philips,
Almelo, The Netherlands). A copper target X-ray
(wavelength 1.541A� CuK�) tube was operated at
a power of 40 kV, 30 mA. The automatic diver-
gence slit was set at 1° for the X-ray beam and at

0.1° for the receiving scintillation detector. The
scans were carried out at a step size of 0.04° and
counting time for 0.5 s per step within the ranges
of 7–48° (2�).

2.5. Pre-processing of the data

Using spectral intensities at all theta degrees of
the diffractogram or at all wavenumbers from the
DRIFT spectra directly as input data vectors had
a weak correlation with weight fractions of poly-
morphs in mixtures. Reduction and transforma-
tion of the input data was necessary to enhance
the ANN performance [22]. Transformation of
the variable also reduced the number of outliers,
and variance among values.

2.5.1. XRD patterns
The powder patterns were sampled between 15

and 29.4°(2�), the region containing the charac-
teristic diffractions and 360 steps (2�) were
recorded. These steps were further processed to
reduce the data being fed to ANN and to smooth
the noise in the diffractograms. The 360 steps
were reduced into 72 (dB=5), 36 (dB=10) and
subsequently into 18 (dB=20) averaged intensi-
ties from 5,10 or 20 consecutive steps,
respectively.

2.5.2. DRIFT spectroscopy
The original spectra were sampled between 660

and 3860 wavenumbers (cm−1) and reduced to
1600 spectral intensities during the data recording.
These spectral data were further processed to
smooth the noise in the spectra. The 1600 ab-
sorbances were reduced into 160 averaged spectral
values, each from ten consecutive wavenumbers
(dB=10), 64 (dB=25) and 32 (dB=50).

These data were used as inputs together with
the corresponding weight fraction of Form 1 and
2 as output to train the ANN.

2.6. Optimal network architecture and training

A standard feed-forward network, with back-
propagation rule and multilayer perceptron
(MLP) model architecture [23] was used in this
study.
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Three ANNs models were trained and tested
per each technique. For the DRIFT analysis, the
ANN models consisted of 160 (n=10), 64 inputs
(n=25) or 32 inputs (n=50) for the averaged
spectral value. For the XRD analysis, models had
72 (n=5), 36 (n=10) and 18 (n=20) inputs,
respectively. Seven models with combined inputs
from DRIFTS spectra and XRPD diffractograms
were trained and tested (160+72, 64+72,
32+18, 32+72, 32+36, 64+36 and 54+72).

Models had two output neurons, one for the
percentage of each ranitidine–HCl crystal form.
The number of hidden layers and hidden neurons
was optimized.

ANN training was accomplished by cycling
through the entire assembly of training examples
and correcting the weights using the standard
back-propagation rule to minimize the sum
squared output error.

Weights and biases were initialized with
random values at the start of each training run.
During training, the performance of the ANN
was evaluated with testing data. That is, 80% of
the original sample data (mixtures containing 0, 1,
5, 20, 30, 40, 60, 70, 100% of Form 2) was used
for the training and the other 20% of the data was
used as the test set and back-propagated through
the network to evaluate the trained network. The
set used for testing was rotated and the results of
the four runs were averaged.

Since training the ANNs can only compare the
performance of the various types of network,
models were validated on a third set of data.
Predictions of the polymorphic composition of
mixtures containing 2, 10 and 50% of Form 2
were used to validate neural network models.

Thus, three types of data sets are used:
training data: used to train network,
test data: used to monitor the neural network
performance during training,
validation data: used to measure the perfor-
mance of a trained application,

each with corresponding error. To calculate the
rooted mean squared error (R.M.S., overall error)
the individual errors are squared, summed, di-
vided by the number of individual errors, and
then square rooted.

3. Results and discussion

The requirement of analytical control implies
reliable methods of detecting, distinguishing and
quantifying polymorphs. The techniques used to
assess polymorphism derive information from dif-
ferent means, and it is usually necessary to investi-
gate polymorphism with multiple techniques.

XRPD is a powerful technique for the identifi-
cation of crystalline solid phases, crystallinity and
phase purity. Every crystalline solid phase has a
unique XRD pattern as molecular repetition will
give a unique set of reflection and generate a
unique pattern. Change in crystal packing will
lead to change in the form of molecular arrange-
ment and repetition. Thus, different polymorphs
will give a distinctive X-ray powder patterns. X-
ray powder crystallography is, therefore, of great
value for distinguishing and identifying poly-
morphs [24]. In a powder mixture, each crystalline
phase produces its pattern independently of the
other components in the mixture. Despite, XRPD
is an underutilized analytical method for the de-
termination of crystalline purity of solid phases
and has found only limited application for the
evaluation of drug product quality [25,26].

Non-destructive methods of analysis that allow
rapid, sufficiently precise and reliable quality con-
trol have wide applications in many production
systems. IR spectroscopy is a widely recom-
mended identification method, wherein the spec-
trum of the test substance is compared with the
spectrum of the reference standard [27]. Unfortu-
nately, most of the identification methods cur-
rently listed are insensitive to the solid state of the
drug in the dosage form. Methods based on IR
spectroscopy have been the subject of consider-
able research, development and implementation in
the pharmaceutical industry [28,29]. In recent
years, much effort has been expended in the at-
tempt to use IR spectroscopy in the quality con-
trol of solid pharmaceutical formulations [30].
Differences in crystal packing or conformational
differences are mainly responsible for polymor-
phism. An infrared spectrum is unique for a com-
pound and different polymorphs may show
differences in their infrared absorbance due to
differences at the molecular level [31]. Choice of
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Fig. 2. Ranitidine tautomeric forms.

the routine sample presentation method for solid
state IR spectroscopy includes mulls [32], disks
[33], diffuse reflection [34] and attenuated total
reflection (ATR) [35], since the running of solu-
tion spectra is excluded for distinguishing of poly-
morphs. The key factor in determining the sample
procedure is the stability of the polymorphs.
Disks or mulls are usually most appropriate, but
DRIFTS is particularly suited for the examination
of polymorphic systems as the preparation tech-
nique will minimize polymorphic interconverzion
[36,37]. In this work, DRIFTS was implemented
as the sampling method of choice to eliminate the
possibility of polymorphic transformations during
sampling preparations. Experiments had sug-
gested that the reason for polymorphism of rani-
tidine–HCl is tautomerism [9]. Electron delocal-
ization occurs at 2,2-diamino-1-nitroethylene
residue. This structure can exist in three tau-
tomeric forms. However, only two tautomers are
stable and, therefore, we have two crystal forms
(Fig. 2). DRIFT spectrum of Form 2 show addi-
tional peak at 2400 and peak at1610 cm−1 is split
into two peaks. Imino group (C�NH) usually
shows one broad peak or group of relatively
sharp peaks at 2400 cm−1, while peak at 1610 is
characteristic for the C�N in plane bending of
amino groups and for the vibration of conjugated
acyclic double bonds (1600–1650). These spectral
differences confirmed that two tautomeric forms

are responsible for the polymorphic behaviors.
Perhaps the electronic delocalization, present in
Form 2, causes the differences in the spectra.

While DRIFTS detects properties associated
with the molecular level, XRPD is a non-spectro-
scopic technique that determines the polymorphic
form of a substance based on differences in the
crystal packing. The XRPD patterns, and DRIFT
spectra, of each polymorphic form of ranitidine–
HCl are unique (Figs. 3 and 4). Predictions of the
Form1/Form 2 polymorphic composition of mix-
tures were made with each technique and with
combined data of the two techniques and com-
pared with the theoretical values.

Better results were obtained with higher resolu-
tion spectra for a single technique. Best models
had 160 (dB=10) and 36 (dB=10) inputs for the

Fig. 3. X-ray diffractograms of the two polymorphic forms of
ranitidine–HCl.
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Fig. 4. DRIFT spectra of the two polymorphic forms of
ranitidine–HCl.

were obtained also by the model with 64 inputs
from the DRIFT spectrogram (dB=25) and 36
inputs from the X-ray diffractogram (dB=10)
and two hidden layers with four and two hidden
neurons, respectively.

Plots of measured composition against pre-
dicted values with different techniques are shown
in Fig. 5 and Fig. 6. In the case of Form 1 for the
DRIFT spectra, XRPD pattern and the combina-
tion of both techniques linear regression analysis
gave slopes of 1.011, 0.9621 and 1.007, intercept
values of −0.519, −0.810 and −0.216 (Fig. 5).
Coefficients of correlation were 0.998, 0.985 and
0.999. For the Form 2 linear regression analysis
gave slopes of 1.019, 0.962 and 1.000, intercept
values of −0.378, 4.572 and −0.153 and correla-
tion coefficients of r=0.998, 0.984 and 0.999,
respectively (Fig. 6). In each case, intercept was
not significantly different from zero and slope was
not different from unity indicating no method
bias and absence of proportional error.

The ANN model constructed from the XRD
pattern was superior in predictions at lower con-
centration of one form (1 and 2% of Form 2), but
the ANNs model constructed with the DRIFT
spectral data had better overall averaged
prediction.

The minimum quantifiable level (MQL) is de-
termined from multiple measurements of the spec-
tral response of a single sample mixture
containing 1% of Form 2 (n=5) and utilizing Eq.
(1)[38]. Based upon a standard deviation (S.D.) of
0.76 and slope of 1.019 for DRIFT spectroscopy,
an MQL of 7.5% for the Form 2 was calculated:

DRIFT and XRPD technique, respectively. In
case of DRIFT analysis, models had only one
hidden layer, but for the XRD analysis better
results were obtained with two hidden layers.
Network structure was optimized by heuristic
search. The criteria for judging the best model
was rooted sum of mean squared error (R.M.S.)
and relative error (ERR%) of model predictions
(Tables 1 and 2).

Predictions were improved with the composite
model created from combined inputs. Low-resolu-
tion DRIFT spectra and XRPD pattern were
sufficient to achieve good results. Training the
ANN with all available data would exhaust the
network on training the irrelevant parts of the
spectra. The best model had 36 inputs from the
DRIFT spectra (dB=50) and 32 inputs from
XRD pattern (dB=10) and one hidden layer with
24 hidden neurons (Table 3). Good prediction

Table 1
Best ANNs structures for combined and single methods

Hidden neurones ANNs modelaInputs R.M.S.

TestingTraining2nd layer1st layer�XRD ValidationDRIFT

1.640.06 1.4132 104/11/272 104 11 0
72 72/24/2024 0.813632 0.720.09

0.24 2.34 0.44100 4 264 100/4/2/236
160 1.910 160 24 0 160/24/2 1.79 3.37

36 1.318.141.2336/1/2/2232 10

a Number of inputs/hidden neurones/outputs.
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Table 2
Averaged predictions with different ANNs for the validation data set

ANN structure

DRIFTS XRPDDRIFTS+XRPD

68/24/2 136/4/1/2 100/4/2 160/24/2 32/9/2 64/11/2 72/5/2/2104/11/2 36/1/2/2 18/6/250/4/4232/30/2232/5/2/2

DRIFTS+XRPD inputs

32+36 64+72 64+30160+72 160+72 32+18 32+72

PredictedTheoretical

2.19 6.24 2.26 3.88 7.45 5.87Form 2 (%) 4.532 3.42 5.095.25 2.20 4.99 1.19
10.01 10.10 9.98 7.94 8.48 8.91 9.999.99 8.93 10.1110.0110.139.9810
50.00 50.21 49.99 53.23 66.72 49.56 11.36 44.6450 90.2132.25 37.24 52.93 51.80
96.90 93.76 97.66 96.05 92.77 94.10 95.4998.82 96.82Form 1 (%) 94.8995.0096.9894.7698
89.9990 89.90 89.94 92.10 91.73 91.03 90.01 91.30 89.9390.03 89.95 89.97 90.00
50.00 49.79 50.13 46.50 33.37 50.62 88.7347.96 54.8547.37 9.75650 67.72 64.90
1.41ERR(%)a 38.42 4.38 24.20 62.40 37.38 49.40 17.46 53.2941.58 13.35 29.37 10.27

a ERR (%) (Predicted−Actual)/Actual×100 averaged.
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Table 3
Determination of the polymorphic composition of synthetic mixtures of ranitidine–HCl by the combined DRFT and XRDP
techniques and using 68/24/2 ANNs model

Found (%) Recovery Form 1 (%) Found (%) RecoverySample number Form 2 (%)

0.25 a1 100.000.00 99.8 99.80
2 1.00 1.06 106.00 99.00 98.97 99.97
3b 2.192.00 109.50 98.00 96.9 98.88

4.97 99.40 95.005.00 95.014 100.01
10.005b 10.01 100.10 90.00 89.99 99.99
20.006 19.99 99.95 80.00 80.01 100.01

30.09 100.30 70.0030.00 68.517 97.87
8 39.9940.00 99.98 60.00 59.97 99.95

49.99 99.98 50.0050.00 50.039b 100.06
60.0010 60.02 100.03 40.00 40.01 100.03
70.0011 69.98 99.97 30.00 29.89 99.63

99.74 99.74 0.00100.00 0.2612 a

101.36Recovery (%)c 99.64
3.26S.D.d 0.72

R.S.D. (%)e 3.22 0.72

a Cannot be calculated.
b Validation data set.
c Recovery= (amount found ×100)/amount added.

d S.D.=
��n

1(xi−x̄)2

n−1 , where xi is the measured value and n is the number of results to calculate the mean, x̄=mean value.

e R.S.D. (%)=
S.D.×100

x̄
.

Fig. 5. Plot of values predicted by DRIFTS, XRPD and combined technique against theoretical polymorph Form 1 composition.
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MQL=
10×S.D.

Slope
(1)

The limit of detection (LD) was calculated by
multiplying the S.D. by three and then dividing by
the slope of the calibration curve. Through this
method of calculation, the LD was found to be
2.2% (w/w). For the XRP diffractometry MQL
was 11.3% and LD was 3.4% (S.D.=0.96,
Slope=1.09) and for combined technique MQL
was 5.2 and LD was 1.5% (S.D.=0.524, Slope=
1.001). It is obvious that calibration function ob-
tained with combined data had constant variance
over the entire concentration range and, therefore,
higher precision and less deviation from linearity.
Since S.D. for replicated samples containing 1%
of Form 2 (n=5) was smaller, MQL and LD
were significantly smaller in comparison with sin-
gle technique methods.

4. Conclusion

In conclusion, we have shown that the combi-
nation of DRIFTS and XRPD using ANNs can
provide qualitative and quantitative information
about the polymorphic composition of rani-
tidine–HCl drug substance. The method de-
scribed can be used may be successfully applied to
the in situ monitoring of the crystal nature of a
ranitidine–HCl bulk drug sample.

The technique can provide qualitative and
quantitative information about the solid state of
the ranitidine–HCl drug substance (crystal form).
The method can be used in primary production
for the bulk drug substance control. Polymorphic
transition in solid state induced during pharma-
ceutical processing can be detected and even
quantified.
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